Министерство образования Свердловской области Муниципальный орган «Управление образования ГО Краснотурьинск» Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа №17»

Принята на заседании педагогического совета МАОУ «СОШ №17» Протокол № 2 от 27.08.2025 г.

Утверждаю:

Директор МАОУ «СОШ № 17»

/Ивашева Е.В./

Приказ №229-ОД от 27.08.2025г.

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Черчение»

Возраст обучающихся: 16-17 лет Сроки реализации: 1 год (76 часов, 2 группы)

Автор-составитель: Цыплёнкова А.Н., педагог дополнительного образования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Направленность.

Черчение является основой инженерной и конструкторской деятельности. Его изучение служит фундаментом для дальнейшего профессионального образования, обеспечивает базу для формирования пространственного мышления и технической грамотности при современном ускоренном технологическом развитии.

Актуальность.

Курс внеурочной деятельности «Черчение» направлен на:

- овладение приемами 3D-моделирования деталей и сборочных единиц; создания, чтения и оформления сборочных чертежей;
- развитие навыков создания творческих и учебных инженерных проектов с применением ручных и автоматизированных способов подготовки чертежей, эскизов и технических рисунков деталей;
- развитие навыков работы с чертежами и другими видами конструкторской документации и графическими моделями;
 - развитие навыков проведения расчетов по чертежам.

Новизна курса состоит в том, что она основывается на применении современного программного обеспечения, позволяет изменить подход к проектной деятельности обучающихся в области инженерного проектирования при использовании конструкторской документации.

Системы автоматизированного проектирования (САПР) обладают возможностями, недоступными в ручном черчении:

- наглядного представления 3D-моделей объектов, в том числе сборок;
- автоматического создания ассоциативных чертежей по их 3D-моделям;
- имитации технологических процессов при создании деталей, изделийи сборочных единиц.

При этом возможно применение аналоговых, параметрическихи координатных методов создания 3D-моделей объектов и чертежей.

Для формирования необходимых компетенций проектирования инженерных объектов, черчения и моделирования предлагается использовать программное обеспечение КОМПАС-3D (версия КОМПАС-3D v.21 российской группы компаний АСКОН, разработанная специально для учебных целей).

Актуальность курса состоит в том, что он позволяет раскрыть таланты обучающихся в проектной деятельности, развить их интеллектуальные возможности, научить молодых людей творчески мыслить, не отрываясь при этом от реальности, ограниченной применяемыми технологиями, инструментами и материалами.

Отличительные особенности.

Курс знакомит обучающихся с увлекательным миром инженерного проектирования с использованием САПР на примере российского программного продукта КОМПАС-3D, который применяется в вузах, на производстве, при этом:

- осваиваются метод проектов и информационно-технологические средства поиска в Интернете для знакомства с инженерными объектами по заданным темам и параметрам;
 - развиваются инженерные компетенции обучающихся;
- накапливается опыт постановки инженерных задач и заданий по компьютерному черчению и моделированию, а также опыт выбора средств для решения этих задач;
- введено изучение тем: определение и классификация инженерных объектов, функциональные, инженерные и технологические качества инженерных объектов;
- изучается технологическая практика освоения последовательности сборочных операций и моделирования в программе КОМПАС-3D;
- форма организации уроков способствует повышению мотивации и активизации внимания обучающихся на основе здоровьесберегающих

технологий организации учебного процесса; предусмотрены коллективные формы работы;

– курс позволяет подготовить обучающихся к состязаниям школьников в конкурсах по различным номинациям, включая компьютерное черчение в КОМПАС-3D, конструирование, прототипирование, промышленный и инженерный дизайн.

Адресат.

Учебный план не предусматривает обязательное изучение курса черчения и компьютерной графики в 10 классе. Время на данный курс образовательная организация может выделить за счет части учебного плана, формируемой участниками образовательных отношений.

Объем и сроки освоения программы.

Программа составлена из расчета общей учебной нагрузки 76 часов за год обучения по 2 часа в неделю в первом полугодии (два занятия по одному часу) и по 3 часа во

втором полугодии (два занятия в неделю по 1,5 часа.)

Особенности организации образовательного процесса.

Класс делится на две группы, не более 15 обучающихся.

Форма обучения: очная

Форма организации образовательного процесса: фронтальная, групповая

Формы реализации образовательной программы.

Форма проведения занятий может быть как индивидуальная, так и групповая в зависимости от уровня подготовки обучающихся. Разноуровневость предварительной подготовки обучающихся, сложностьи большой объем материала преодолеваются приемами дифференциального подхода к обучению в сочетании с коллективной работой в малых группах.

Например, в группе из трех обучающихся по одной учебной теме каждый участник может выполнять на уроке отдельное упражнение или задачу, а в концеурока обучающиеся обмениваются опытом.

В проектах модели отдельных деталей выполняют разные обучающиеся, для сборок ученики используют общий банк комплектующих, что позволяет существенно активизировать работу над сборками и проектами.

Перечень форм подведения итогов занятий.

Итоговый контроль рекомендуется проводить в форме индивидуального собеседования, направленного на решение практических заданий в программе КОМПАС-3D.

Текущий контроль качества обучения включает контролирующую, обучающую, воспитывающую и развивающую функции и осуществляется фронтально по качеству и количеству выполненной графической работы на компьютере. Для оценивания компетенций обучающихся работатьс графической системой КОМПАС-3D проводятся тестирование, устные опросы, даются самостоятельные работы.

По итогам освоения программы курса обучающиеся представляют проекты, содержащие компьютерные рисунки, модели в КОМПАС-3D, чертежи и другие конструкторские документы, выполненные в соответствии с правилами оформления конструкторской документации.

Выполненные творческие проектные работы обучающиеся демонстрируют перед классом и рассказывают, как они достигли такого результата. Творческие работы в программном обеспечении КОМПАС-3D сохраняются в специальной электронной папке.

Проверка теоретических знаний и практических навыков в ходе выполнения графических работ производится индивидуально.

Перечень форм подведения итогов реализации общеразвивающей программы.

Итоги освоения программы курса подводятся по результатам участия обучающихся в различных конкурсах и олимпиадах по черчению, конструированию и моделированию. Навыки, приобретенные обучающимися при изучении курса «Черчение», могут быть

применены для реализации индивидуального проекта соответствующей тематики. По результатам выполненных проектов проводится ученическая конференция, на которой происходит обсуждение и оценка проделанной работы.

Цели и задачи курса внеурочной деятельности «Черчение»

Цели курса:

- формирование конструкторского мышления как фундамента технического, инженерного образования с целью обеспечения технологическогосуверенитета страны;
- воспитание творческой личности, способной самостоятельно ставить перед собой задачи и решать их.

Задачи курса:

- знакомство с видами инженерных объектов, особенностями их классификации и инженерными качествами объектов;
- освоение приемов проектирования, создания и редактирования моделейобъектов и чертежей в САПР на примере КОМПАС-3D;
- подготовка к выбору профессий, связанных с проектированием, производством, эксплуатацией и реконструкцией инженерных объектови оборудования;
- изучение норм государственных стандартов на оформление и создание конструкторских документов;
 - овладение практикой работы с конструкторскими документами чтения чертежей;
 - развитие пространственного воображения при работе с 3D-моделями;
- расширение технического кругозора для обеспечения безопасности жизнедеятельности в современном мире со сложной развитой инженерной инфраструктурой.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты.

Метапредметные результаты освоения курса по компьютерному проектированию и черчению отражают овладение обучающимися универсальными учебными действиями — познавательными, коммуникативными, регулятивными.

Познавательные универсальные учебные действия

Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему,
 рассматривать ее всесторонне;
- устанавливать существенный признак или основания для сравнения, классификации и обобщения;
 - определять цели деятельности, задавать параметры и критерии ихдостижения;
 - выявлять закономерности и противоречия в рассматриваемых явлениях;
- разрабатывать план решения проблемы с учетом анализа имеющихся материальных и нематериальных ресурсов;
 - вносить коррективы в деятельность, оценивать соответствие

результатов целям, оценивать риски последствий деятельности;

- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
 - развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

- владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем, способностью и готовностьюк самостоятельному поиску методов решения практических задач, применению различных методов познания;
- владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных и социальных проектов;
- формировать научный тип мышления, владеть научной терминологией, ключевыми понятиями и методами;
- ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу ее решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
 - давать оценку новым ситуациям, оценивать приобретенный опыт;
- осуществлять целенаправленный поиск переноса средств и способов действия в профессиональную среду;
- уметь переносить знания в познавательную и практическую области жизнедеятельности;
 - уметь интегрировать знания из разных предметных областей;
- выдвигать новые идеи, предлагать оригинальные подходы и решения; выявлять проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
- создавать тексты в различных форматах с учетом назначения информации и целевой аудитории, выбирая оптимальную форму представленияи визуализации;
- оценивать достоверность, легитимность информации, ее соответствие правовым и морально-этическим нормам;
- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- владеть навыками распознавания и защиты информации, информационной безопасности личности.

Личностные результаты.

Личностные результаты отражают готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опытаобучающихся и опыта деятельности в процессе реализации средствами курса следующих основных направлений воспитательной деятельности:

гражданское воспитание:

- осознание своих конституционных прав и обязанностей, уважение закона и правопорядка, соблюдение основополагающих норм информационного права и информационной безопасности;
- готовность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам в виртуальном пространстве;

патриотическое воспитание:

— ценностное отношение к историческому наследию, достижениям России в науке, искусстве, технологиях;

духовно-нравственное воспитание:

- сформированность нравственного сознания, этического поведения;
- способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в сети Интернет;

эстетическое воспитание:

- эстетическое отношение к миру, включая эстетику научного, технического и инженерного творчества;
- способность воспринимать различные виды искусства, в том числе основанные на использовании информационных технологий;

физическое воспитание:

— сформированность здорового и безопасного образа жизни, ответственного отношения к своему здоровью, том числе за счет соблюдения требований безопасной эксплуатации средств информационных и коммуникационных технологий;

трудовое воспитание:

- готовность к активной деятельности технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такую деятельность;
- интерес к сферам профессиональной деятельности, связанным с инженерными специальностями;
- умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;
- готовность и способность к образованию и самообразованиюна протяжении всей жизни;

экологическое воспитание:

— осознание глобального характера экологических проблем и путей их решения, в том числе с учетом возможностей ИКТ;

ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития технологий черчения, достижениям научно-технического прогресса и общественной практики, за счет понимания роли информационных ресурсов, информационных процессов и информационных технологий в условиях цифровой трансформации многих сфер жизни современногообщества;
- осознание ценности научной деятельности, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе.
- В процессе достижения личностных результатов освоения программы курса внеурочной деятельности «Черчение» у обучающихся совершенствуется эмоциональный интеллект, предполагающийсформированность:
- *саморегулирования*, включающего самоконтроль, умение принимать ответственность за свое поведение, способность адаптироватьсяк эмоциональным изменениям и проявлять гибкость, быть открытым новому;
- *внутренней мотивации*, включающей стремление к достижению целии успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей;
- *эмпатии*, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении коммуникации, способность к сочувствию и сопереживанию;
- *социальных навыков*, включающих способность выстраивать отношенияс другими людьми, заботиться, проявлять интерес и разрешать конфликты.

Предметные результаты

Предметные результаты характеризуют опыт обучающихся в графической деятельности, который приобретается и закрепляется в процессе освоения программы курса:

- формирование основ графической культуры обучающихся как части их общей технической культуры; развитие технологического видения окружающего мира;
- развитие зрительной памяти, ассоциативного мышления, пространственного и творческого воображения;
- развитие визуально-пространственного мышления как формы эмоциональноценностного освоения мира и самовыражения;
 - приобретение опыта создания образцов техники, архитектуры и дизайна;
- приобретение опыта работы с различными изобразительными материалами, в том числе базирующимися на ИКТ (цифровая фотография, компьютерная графика и др.);
- развитие индивидуальных творческих способностей обучающихся, формирование устойчивого интереса к творческой деятельности;
 - развитие компетенций работы с чертежными инструментами и приборами;
 - приобретение опыта анализа и исследования технических конструкций;
- освоение основных приемов черчения, моделирования, конструирования и элементов компьютерной графики.
- следовать правилам построения чертежа и нормам Государственных стандартов Единой системы конструкторской документации, в том числе в процессе создания субъективно нового графического продукта при моделировании в КОМПАС-3D;

- читать чертежи и оценивать условия применимости графических технологий с позиции практической целесообразности;
 - освоить способы формообразования в САПР на примере КОМПАС-3D;
- описывать конкретные технологические решения с помощью чертежей, текста, рисунков, графических изображений;
- проводить и анализировать разработку и/или реализацию прикладных проектов, модификацию графического продукта по технической документации;
- читать чертежи и анализировать конструирование механизмов, позволяющих решать конкретные задачи.

УЧЕБНЫЙ ПЛАН

№ п\п	Название раздела, темы		Количество	Формы аттестации/ контроля	
		Всего	Теория	Практика	
1.	Основы черчения. Знакомство с системой проектирования изделий КОМПАС-3D	18	5	13	
1.1	Правила безопасности. Понятие о чертежах и стандартах	2	1	1	Анализ работы
1.2	Графические примитивы. Создание графических примитивов	4	1	3	Анализ работы
1.3	Построение чертежапо координатам. Аналоговые способыи инструменты построения изображений	6	1	5	Анализ работы
1.4	Использование привязок	2	1	1	Анализ работы
1.5	Нанесение размеровна чертежах	4	1	3	Анализ работы
2.	Создание 3D-моделей	22	7	15	Анализ работы
2.1	Изделие и модель. Создание 3D-моделей. Интерфейс окна «Деталь»	6	1	5	Анализ работы
2.2	Геометрические примитивы	2	1	1	Анализ работы
2.3	Операции и инструменты формообразования. Элемент выдавливания.	6	1	5	Анализ работы

	Инструмент «Вырезать				
	выдавливанием»				
2.4	Размеры в эскизах.	2	1	1	Анализ работы
2.4	Применение	2	1	1	71нализ расоты
	фиксированного				
	размера				
	для изменения				
	контура эскиза				
2.5	Определение	2	1	1	Анализ работы
2.5	параметров модели	2	1	1	Анализ рассты
2.6	Создание деталей	2	1	1	Анализ работы
2.0	сложных форм	2	1	1	тнализ рассты
	«Выдавливанием»				
2.7	Сложные элементы	2	1	1	Анализ работы
2.7	формообразования	2	1	1	71нализ расоты
3	Проекционное черчение и	12	5	7	
3	создание объектов по	12	3	/	
	чертежам				
3.1	Проекционное	2	1	1	Анализ работы
5.1	черчение	2	1	1	71нализ расоты
3.2	Создание	4	1	3	Анализ работы
٥.۷	ассоциативного	4	•	3	Анализ рассты
	чертежа средствами				
	программы				
	КОМПАС-3D				
3.3	Редактирование	2	1	1	Анализ работы
5.5	чертежа с помощью	_	1		Tindsin's paddibl
	«Дерева чертежа»				
3.4	Применение разрезови	2	1	1	Анализ работы
5.1	сечений на чертеже	_	1	-	Tinusins puoorbi
3.5	Построение разрезовна	2	1	1	Анализ работы
3.5	ассоциативном	_	1	-	Tina, mis pado ibi
	чертеже				
4.	Сборочные операции и	12	6	6	
	чертежи				
4.1	Соединения деталей	2	1	1	Анализ работы
4.2	Создание сборных	2	1	1	Анализ работы
-	конструкций	_			
	по координатам				
4.3	Применение	2	1	1	Анализ работы
5	инструментов	_			
	сопряжения				
	и перемещения				
	компонентов				
4.4	Моделирование	2	1	1	Анализ работы
					TIME PROOFE

	сборок с крепежными				
	соединениями				
4.5	Документы	2	1	1	Анализ работы
	конструкторские				
4.6	Применение	2	1	1	Анализ работы
	стандартных				
	крепежных элементов				
4.7	Соединения валовс	2	1	1	Анализ работы
	сопряженными				
	деталями. Штифтовые				
	соединения				
4.8	Проектирование	2	1	1	Анализ работы
	сборочной единицы				
	ИТОГО	76	23	53	

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Nº п/п	Наименование разделов и тем	Количество часов	Программное содержание	Форма работы / характеристика деятельности обучающихся
Разде	л 1. Основы черчения. З	Внакомство с с	истемой проектирования изделий КОМПАС	-3D
1.1	Правила безопасности. Понятие о чертежах и стандартах	2	Правила гигиены и безопасности при работе с чертежным инструментом и на компьютере. Стандарты ЕСКД. Основные требования к чертежам	Приводить примеры правильного и неправильного обращения с чертежным инструментом, соблюдения и несоблюдения гигиенических требований при работе с компьютером. Приводить примеры требований, которые регламентируются ЕСКД. Называть основные элементы оформления чертежа
1.2	Графические примитивы. Создание графических примитивов	4	Знакомство с системой проектирования изделий КОМПАС-3D. Освоение начальных приемов работы и команд в документе «Чертеж».	Раскрывать смысл изучаемых понятий. Осуществлять построение примитивов по числовым и нечисловым параметрам

	с определенными		Практическая работа	
	параметрами		«Изучение и применение параметров инструментов»	
1.3	Построение чертежа по координатам. Аналоговые способы и инструменты построения изображений	6	Создание графических примитивов с определенными параметрами. Построение чертежа по координатам	Раскрывать смысл изучаемых понятий. Осуществлять построение чертежа по координатам
1.4	Использование привязок	2	Локальные и глобальные привязки	Раскрывать смысл изучаемых понятий. Применять глобальную и локальную привязки. Осуществлять анализ и синтез изображения
1.5	Нанесение размеров на чертежах	4	Габаритные и сопрягающиеся размеры. Правила нанесения размеров. Практическая работа «Нанесение размеров в программе КОМПАС-3D»	Раскрывать смысл изучаемых понятий. Различать габаритные и сопрягающиеся размеры. Применять правила нанесения размеров на чертежах в программе КОМПАС-3D
Итого	по разделу	18		
Разде	ел 2. Создание 3D-модело	ей		
2.1	Изделие и модель. Создание 3D-моделей.	6	Изделия и моделирование. Создание и сохранение документа «Деталь»	Различать виды изделий: деталь, сборочная единица, комплект, комплекс.

	Интерфейс окна «Деталь»			Описывать жизненный цикл инженерных объектов. Понимать значение моделей в проектировании. Применять алгоритм работы с интерфейсом окна «Деталь»
2.2	Геометрические примитивы	2	Геометрические примитивы. Порядок моделирования	Раскрывать смысл изучаемых понятий. Применять алгоритм работы при моделировании
2.3	Операции и инструменты формообразования. Элемент выдавливания. Инструмент «Вырезать выдавливанием»	6	Технологии формообразования. Средства моделирования КОМПАС-3D. Инструменты группы «Элемент выдавливания». Алгоритм создания элемента выдавливанием. Требования к эскизу	Раскрывать смысл изучаемых понятий. Применять технологии формообразования и алгоритм создания элемента выдавливанием. Создавать элемент выдавливания
2.4	Размеры в эскизах. Применение фиксированного размера для изменения контура эскиза	2	Правила построения и требования, предъявляемые к эскизам. Два вида размеров в эскизах: фиксированные и информационные. Практическая работа «Применение фиксированного размера для изменения контура эскиза»	Раскрывать смысл изучаемых понятий. Применять правила построения и требования, предъявляемые к эскизам. Применять фиксированный размер для изменения контура эскиза

2.5	Определение параметров модели	2	Геометрические и расчетные параметры модели. Практическая работа «Геометрические и расчетные параметры модели»	Раскрывать смысл изучаемых понятий. Различать геометрические и расчетные параметры модели. Применять алгоритм определения параметров. Определять геометрические и расчетные параметры модели
2.6	Создание деталей сложных форм «Выдавливанием»	2	Сложные элементы формообразования, операции формообразования	Раскрывать смысл изучаемых понятий. Применять алгоритм проектирования детали: анализ формы и синтез модели. Создавать детали сложных форм «Выдавливанием»
2.7	Сложные элементы формообразования	2	Операции формообразования: «Выдавливание», «Вращение», «По траектории» и «По сечениям»	Раскрывать смысл изучаемых понятий. Соблюдать требования к эскизу. Проводить операции со сложными элементами формообразования
Итого	о по разделу	22		
Разде	ел 3. Проекционное черч	ение и создан	ие объектов по чертежам	
3.1	Проекционное черчение	2	Образование проекционного чертежа. Прямоугольное проецирование. Чтение чертежа	Раскрывать смысл изучаемых понятий. Применять правила изображения предметов на чертежах согласно ГОСТ 2.305-2008 «Единая система конструкторской

3.2	Создание ассоциативного чертежа средствами программы КОМПАС-3D	4	Алгоритм создания ассоциативного чертежа объекта. Перемещение чертежа в формате. Проверка соответствия. Практическая работа «Параметры вставки ассоциативного чертежа»	документации. Изображения – виды, разрезы, сечения». Осуществлять чтение чертежа Раскрывать смысл изучаемых понятий и операций. Применять алгоритм создания ассоциативного чертежа объекта. Создавать ассоциативный чертеж
3.3	Редактирование чертежа с помощью «Дерева чертежа»	2	Настройка параметров видов. Практическая работа «Вставка чертежа, нанесение размеров, осевых и центровых линий»	Раскрывать смысл изучаемых понятий и операций. Применять настройки параметров видов и изменять их
3.4	Применение разрезов и сечений на чертеже	2	Простые и сложные разрезы. Изображение и обозначение сечений	Раскрывать смысл изучаемых понятий и операций. Различать фронтальные, горизонтальные, профильные и сложные разрезы. Объяснять изображение и обозначение сечений
3.5	Построение разрезов на ассоциативном чертеже	2	Построение разреза модели. Алгоритм вставки разреза	Раскрывать смысл изучаемых понятий и операций. Применять инструменты для построения

	о по разделу ел 4. Сборочные операци	12		разреза модели и алгоритм вставки разреза
4.1	Соединения деталей	2	Соединения деталей: подвижные и неподвижные. Виды неподвижных соединений. Комплект документации на изготовление сборочной конструкции	Раскрывать смысл изучаемых понятий и операций. Различать подвижные и неподвижные соединения деталей. Объяснять спецификацию сборочного чертежа
4.2	Создание сборных конструкций по координатам	2	Инструменты позиционирования. Интерфейс документа «Сборка». Создание сборки по координатам в программе КОМПАС-3D	Раскрывать смысл изучаемых понятий и операций. Работать с интерфейсом документа «Сборка». Выполнять сборку по координатам в программе КОМПАС-3D по плану
4.3	Применение инструментов сопряжения и перемещения компонентов	2	Виды сопряжений: совпадение граней, соосность, взаимная параллельность или перпендикулярность, касание и др. Команды для изменения положения компонента	Раскрывать смысл изучаемых понятий и операций. Применять инструменты сопряжения и перемещения

4.4	Моделирование сборок с крепежными соединениями	2	Понятие о стандартных изделиях. Размеры элементов крепежа в зависимости от проектных нагрузок	Раскрывать смысл изучаемых понятий и операций. Применять инструменты группы «Совпадение»: «Параллельность», «Перпендикулярность»
4.5	Документы конструкторские	2	Основные конструкторские документы: для сборочных единиц – спецификация и сборочный чертеж; для деталей – чертежи деталей и электронные модели. Создание конструкторских документов в программе КОМПАС-3D	Раскрывать смысл изучаемых понятий и операций. Объяснять содержание основных конструкторских документов. Применять основные приемы создания конструкторских документов
4.6	Применение стандартных крепежных элементов	2	Библиотека стандартных изделий. Основные приемы работы со стандартными изделиями	Раскрывать смысл изучаемых понятий и операций. Применять основные приемы работы с Библиотекой стандартных изделий
4.7	Соединения валов с сопряженными деталями. Штифтовые соединения	2	Вал и ось, их назначение. Элементы конструкции вала. Крепление деталей на валах	Раскрывать смысл изучаемых понятий и операций. Определять разницу между валом и осью. Объяснять назначение элементов конструкции вала. Применять алгоритм построения чертежа соединения деталей

4.8	Проектирование	2	Этапы создания проекта сборочной	Реализовать проект по созданию сборочной
	сборочной единицы		единицы. Реализация проекта	единицы.
				Создать спецификацию чертежа
Итого	по разделу	16		
Резер	в времени. Обобщение	8		
по тег	мам, контрольные			
работ	Ы			
	ЕЕ КОЛИЧЕСТВО	76		
4AC(ОВ ПО ПРОГРАММЕ			

Содержание учебного плана.

Выполнение чертежей в САПР на примере КОМПАС-3D

Государственные стандарты Единой системы конструкторской документации. Знакомство с САПР на примере КОМПАС-3D. Основные понятия компьютерной графики и ее роль в профессиях, связанных свыполнением чертежных и графических работ.

Интерфейс программы КОМПАС-3D. Основные элементы рабочего окна и возможности инструментальной панели программы КОМПАС-3D. Графические примитивы. Создание графических примитивов с определенными параметрами. Изучение и применение параметров инструментов. Создание изображений. Использование привязок. Нанесение размеров. Проекционное черчение. Создание чертежей деталей в пакете КОМПАС-График. Выполнение заданий творческого характера.

Создание 3D-моделей и ассоциативных чертежей в КОМПАС-3D

Изделия и моделирование. Интерфейс окна «Деталь». Знакомство с окномдокумента «Деталь». Геометрические примитивы. Операции и инструменты формообразования. Операция выдавливания, требования к эскизу. Элемент

«Вырезать выдавливанием». Размеры в эскизах. Определение параметров модели. Создание деталей сложных форм выдавливанием. Сложные элементы формообразования: вращения, кинематического и по сечениям.

Ассоциативные чертежи. Инструменты создания ассоциативного чертежа средствами КОМПАС-3D. Редактирование чертежа с помощью «Дерева чертежа». Разрезы и сечения на чертеже. Построение разрезов на ассоциативном чертеже. Задания для самостоятельной работы по моделированию.

Сборочные операции и чертежи

Соединения деталей. Создание сборных конструкций по координатам. Задачи на применение инструментов сопряжения. Применение инструментов перемещения. Моделирование сборок с крепежными соединениями. Документы конструкторские. Применение стандартных крепежных элементов. Соединение валов с сопряженными деталями. Штифтовые соединения. Проектирование сборочной единицы. Создание проекта по заданной теме. Подготовка к защите проекта и конференция обучающихся.

ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ.

Календарный учебный график

Год	Дата	Дата	Количество	Количество	Количество	Режим
обучения	начала	окончания	учебных	учебных	учебных	занятий
	обучения	обучения	недель	дней	часов	
1 год	1	26 мая	34	68	76	2 занятия
	сентября					по 1.5 часа
						в неделю

Условия реализации программы.

Форма проведения занятий может быть как индивидуальная, таки групповая в зависимости от уровня подготовки обучающихся. Разноуровневость предварительной подготовки обучающихся, сложность и большой объем материала преодолеваются приемами дифференциального подхода к обучению в сочетании с коллективной работой в малых группах.

Например, в группе из трех обучающихся по одной учебной теме каждый участник

может выполнять на уроке отдельное упражнение или задачу, а в концеурока обучающиеся обмениваются опытом.

В проектах модели отдельных деталей выполняют разные обучающиеся, для сборок ученики используют общий банк комплектующих, что позволяет существенно активизировать работу над сборками и проектами.

Материально-техническое обеспечение

- **Учительский сто**л. Располагается недалеко от доски, на расстоянии 1,5 м от передней стены помещения. Если класс оснащён мультимедийной доской, теле- и аудиотехникой, около рабочего места преподавателя устанавливается пульт управления.
- **Рабочие места учеников**. Оборудуются специальными столами для черчения, размер поверхности которых должен быть не менее 0,45 м.
- **Вместительные шкафы**. В них хранится дидактическая и учебная литература, а также другие вспомогательные материалы. Глухие секции шкафов чередуются со стеклянными, в которых размещаются демонстрационные модели.
- **Доска**. На её средней части можно рисовать маркерами или цветными мелками, а с левой или правой стороны она должна быть разграфлена в виде сетки для построения чертежей.
- **Вспомогательные предметы для черчения**. К ним относятся транспортир, треугольник, циркуль, линейка.

Методические материалы

- **Модель проекционных плоскостей**. Помогает в составлении чертежей.
- **Геометрические тела**. Как цельные, так и усечённые.
- Компьютер, телевизор и другая аппаратура.
- **Печатные пособия**. К ним относятся учебники, наглядные рисунки, схемы и методическая литература.
- Кроме того, в кабинете могут быть стенды с демонстрационным материалом, например,
 с образцами чертежных шрифтов, геометрическими построениями, примерами выполненных работ и другими темами.

Формы аттестации\контроля и оценочные материалы

Вид контроля	Цель проведения	Диагностический
		инструментарий (формы,
		методы, диагностики)
Входной контроль	Определение уровня развития	Беседа, наблюдение.
	обучающихся, выявление	
	интересов, творческих	
	способностей	
Текущий контроль	Оценка качества освоения	Опрос, выполнение заданий.
	учебного материала	
	пройденной темы:	
	отслеживание активности	
	обучающихся, их готовности	
	к восприятию нового,	
	корректировка методов	

	обучения	
Промежуточный	Определение успешности	Выполнение заданий
контроль(промежуточная	развития обучающихся	
аттестация)	усвоения ими программы на	
	определенном «этапе»	
	обучения	
Итоговый	Определение успешности	Итоговая работа
контроль(итоговая	освоения программы и	
аттестация)	установления соответствия	
	достижений обучающихся	
	планируемым результатам	

Формы контроля.

Текущий контроль качества обучения включает контролирующую, обучающую, воспитывающую и развивающую функции и осуществляется фронтально по качеству и количеству выполненной графической работы на компьютере. Для оценивания компетенций обучающихся работатьс графической системой КОМПАС-3D проводятся тестирование, устные опросы, даются самостоятельные работы.

По итогам освоения программы курса обучающиеся представляют проекты, содержащие компьютерные рисунки, модели в КОМПАС-3D, чертежи и другие конструкторские документы, выполненные в соответствии с правилами оформления конструкторской документации.

Выполненные творческие проектные работы обучающиеся демонстрируют перед классом и рассказывают, как они достигли такого результата. Творческие работы в программном обеспечении КОМПАС-3D сохраняются в специальной электронной папке.

Проверка теоретических знаний и практических навыков в ходе выполнения графических работ производится индивидуально.

Итоги освоения программы курса подводятся по результатам участия обучающихся в различных конкурсах и олимпиадах по черчению, конструированию и моделированию. Навыки, приобретенные обучающимися при изучении курса «Компьютерное проектирование. Черчение», могут быть применены для реализации индивидуального проекта соответствующей

тематики. По результатам выполненных проектов проводится ученическаяконференция, на которой происходит обсуждение и оценка проделанной работы.

СПИСОК ЛИТЕРАТУРЫ.

- 1. «Азбука КОМПАС» обучающая система, встроенная в программу КОМПАС-3D.
- 2. Технология. Компьютерная графика, черчение. 8 класс : учебник / В.А. Уханёва, Е.Б. Животова. Москва : Просвещение, 2022. 128 с.: ил.
- 3. Технология. Компьютерная графика, черчение. 9 класс : учебник / В.А. Уханёва, Е.Б. Животова. М.: БИНОМ. Лаборатория знаний, 2020. –160 с.: ил.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 203213900564843355954824568531281433305066908348

Владелец Ивашева Елена Владимировна Действителен С 07.10.2024 по 07.10.2025